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On the superposition of currents from ion channels

DONALD R.FREDKIN! anp JOHN A. RICE??t
Departments of Physics' and Mathematics®, University of California, San Diego, La Jolla, California 92093, U.S.A.

SUMMARY

We derive a number of statistical properties of the superposition of several independent channels
contributing to a patch-clamp recording. Failure of these properties indicates dependence of the channels
and may suggest the nature of interactions. We show how properties such as dwell-time distributions of
the individual channels may be determined from those of the superposition in the case that the channels

are independent.

1. INTRODUCTION

Patch-clamp recordings of ion channels often reveal
the presence of more than one channel. There may be
multiple channels of the same type or mixtures of
different types of channels. The constituent channels
may or may not be independent. The presence of
multiple channels complicates the analysis of such
recordings substantially. In this paper we examine
several types of superpositions and, under the as-
sumption of independence, derive properties of the
superposition which are quantitatively testable. We
also show that if independence holds, the dwell-time
distributions of the constituent channels can be
recovered from the superposition.

The paper is organized as follows : In §2 we introduce
certain probability distributions which are equivalent
to dwell-time distributions but which are much more
tractable to work with in the context of super-
positions.In §3 we consider several cases of super-
positions of independent channels: identical channels
with only two conductance levels (‘on’ and ‘off’),
identical channels with more than two conductance
levels, and finally non-identical channels. In each of
these cases we show how the one- and two-dimensional
dwell-time distributions can be recovered from the
superposition. In the course of these derivations a
number of interesting properties of the dwell-time
distributions at the various levels of the superposition
are developed. In §4 we suggest methods of estimating
relevant probability distributions from a finite record.
A closing summary and discussion of open problems is
presented in §5.

2. BASIC DEFINITIONS
In this section we define certain probability distri-

butions related to and equivalent to more commonly

t Present address: Department of Statistics, Evans Hall, University
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used dwell-time distributions. As we will see in the next
section, the former are more natural to use in the
analysis of superpositions. Here we focus on a single ion
channel which, for simplicity of exposition and no-
tation, we assume has either zero or unit conductance,
although the analysis is basically unchanged for a
channel with multiple conductance levels. We will let
X(t) denote the conductance at time ¢. We will assume
throughout that the process X(¢) is stationary.

The probability distribution that will be particularly
useful to us in considering superpositions is

&(t) =P(X(s) = 1,0 < s <), (1)

the unconditional probability that the channel is open
for a length of time ¢ regardless of when it opened or
when it closed. Saying this in another way, g,(¢) is the
probability that during a randomly placed interval of
length ¢ the channel is open. The definition implies that
g,(t) is a non-increasing function. It also follows that

&(0) = P(X(0)=1) =7

0

the probability that the channel is open. Note that
¢

8l _ px(s) = 1,0 <5 < ¢ X(0) = 1).
We define the closing rate of the channel as

¢ = lim%P(X(O) =1& X(h) =0)

— lim L P(X(k) = 0] X(0) = /P(X(0) = 1),

and the opening rate is defined similarly. When there
are only two conductance levels (zero and one), {, =
¢, = ¢ Under reasonable assumptions, { = — g/ (0). To
establish this we will assume the smoothness condition

P(X(s) = 1,0 <5 <A X(0) = 1)
=P(X(h) = 1)| X(0) = 1 +o(h).
347
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This condition essentially stipulates that transitions do
not occur too rapidly. Then

lim ~ (g, (£) — £,(0))

-0t h

l[P(X(s) =1,0<s
P(X(0) =1)
x P(X(0) = 1)

<@_q

= lim—}l;[P(X(/z) =1|X(0) = 1) +o(h)—1]

x P(X(0) = 1)

- %

where the last step follows from
P(X(h)=1]X(0)=1)—1=—P(X(h) =0]|X(0) = 1).

We now relate the g functions to more commonly
used dwell-time distributions. Let £ () be the cumu-
lative distribution function for an open dwell-time (the
probability that the dwell time is less than or equal to
t) and let

E() = 1-F() = P(T> ()

denote the survival function. g, and F are related by a
fundamental result in the theory of stationary point
processes (Cox & Miller 1963):

CAUNSE S [ TR
770 /’LO t

Here u, is the mean open dwell time. This result has
been used in the study of superpositions by Dabrowski
et al. (1989) and Yeo et al. (1989). From this it follows
that

) Mo

Et) =—=—g,(1).

5(0) ,”Ogo( ) (2)
and since F,(0) = 1, we have

_&0) _m, 3)

SRRV
Differentiating equation (2) we find probability density
function of an open dwell time,

_ &0

£(0)
from which it follows that g, (¢) > 0, or that g.(¢) is
convex.

The underlying state of the channel is frequently
modelled as a stationary Markov process with a finite
number of states, the ‘open states’ being conducting
and the ‘closed states’ being non-conducting. We
denote by @ the matrix of infinitesimal transition
probabilities (kinetic rates) and partition @ as Q,,, Qo,
Q.. and Q.. as in Colquhoun & Hawkes (1981). Let p
be the row vector of equilibrium probabilities for the
underlying process (p, is the probability that the
process is in state ¢) and let p be partitioned as p, and
p.. Then

&(l) = poete’l,

Jolt) =

Phil. Trans. R. Soc. Lond. B (1991)

where 1 is a vector of ones. The probability that the
channel is open is 7, = p,1. The opening or closing
rate is

€=porol=chc01 =_p0Q001=_chccl‘

These identities follow as p and 1 are left and right
eigenvectors of ¢ with eigenvalue 0.

We will make use of two-dimensional g functions
defined in the following way: g, (s, f) is the probability
that the channel opens at time ¢= 0, having been
previously closed for a duration of time at least s and is
subsequently open for a duration of time at least ¢. If §
denotes the time that the channel is closed before
opening, and 7 the time that channel is open, then,

Goo(s,t) =EP(S>s & T >1). (4)

This two-dimensional function is related to the one-
dimensional functions by

gco(OJ t) = _g(/)(t> = g <t)7 (5)

Zeo(5,0) = —gi(s) = EF,(s). (6)
Also
gco(0> 0) = _gé(o) = g (7)

In the case that the successive open and closed dwell
times are independent, as in an alternating renewal
process,

8eol8,1) = EE(s) (1)

If the process is time reversible, then g, (s, ) = g..(¢, )
and the joint density of a closed and following open
time is given by

2

1
j‘co(‘s’: t) = Ewgco(‘fa t)‘

Since the probability structure of a Markovian model
is determined by the two-dimensional open—closed and
closed—open probability density functions (Fredkin et
al. 1983), it is also determined by the two-dimensional
g functions.

3. THE SUPERPOSITION OF INDEPENDENT
CHANNELS

In this section we use the functions g defined in the
previous section to characterize the superposition of n
independent channels as a stochastic process:

S8 = X, () + Xy (1) + ... + X, (0).

(a) Identical bi-level channels

We first consider the case in which each channel has
two conductance levels, zero and one. Let g, (¢) and
&,(1) be defined as above and consider

G(t) = P(S(w) = k,0 <u<1).

G, (1) is the probability that, during a randomly placed
time interval of length ¢, £ of the n channels are open
and n—#£ are closed. The G, are the analogues for the
superposition process of the g’s for a single channel.
G,(0) is the probability that there are k£ channels open
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in the superposition, and — G(0) is the rate at which
level £ of the superposition is entered (which equals the
rate at which it is exited).

We will see that many properties of the superposition
process are most simply expressible in terms of G, (¢),

k=0,1,...,n In particular, because the channels are
independent,

n k n—k
6t = (a0 a0 ®)

From the results of the previous section we see that the
cumulative distribution function and the probability
density function of the dwell times of the superposition
at level £ can be obtained from differentiating G,(¢).
Doing so yields the results reported in Dabrowski et al.
(1989) and Yeo et al. (1989). Observe that if the open
and closed dwell-time densities are sums of exponen-
tials, the resulting expressions will be quite unwieldy,
containing a large number of exponentials with rates
being linear combinations of the rate parameters
occurring in the dwell-time densities.

From equation (3), the average duration of an
excursion in level £ is (Yeo et al. 1989)

G (0)
G(0)

d -1
—<$ln Gk(O))
b )
=+

o //LC

Mol

= folfe 9
Ko + (1= ) “

M =

I

These expressions are useful in assessing the biases
incurred if an analysis is based on an incorrect
supposition of the number of channels. Suppose, for
example, that n = 2, but that since doublets are never
observed in a recording, the analysis proceeds as if
n=1. Then the average duration of level one dwell
times will be taken as the average open time:

II'LOI['LC

e
wfi)
II'LC+II'LO 0+II'LC

If the average closed dwell time is much larger than
the average open time, u, will differ little from u,, so
there will only be a small amount of bias in the estimate
of u,. However, because from equation (9), , = ft,/2,
the mean closed dwell time will be seriously under-
estimated.

Continuing with the case of n =2,
function for a level one dwell time is

M =

the survival

Gi(9)
G;(0
= E(1)

F(1) =

=

g () +E() g,(1),

which follows after some algebra, using the relations
,(0)+g,(0) =1 and g,(0) = g;(0). Suppose that the
channel is predominately closed and that the closed
times tend to be long; then for small ¢, | = g.(¢) > g,(¢)

Phil. Trans. R. Soc. Lond. B (1991)
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so that F(f) ~ F({). In this situation, an analysis
unaware of the existence of two channels in the patch
would be expected to estimate a survival function for
the open dwell time that was reasonably accurate for
small ¢, but that was increasingly biased for large ¢. The
relation between the survival function at level zero and
the actual closed dwell-time survival function is given

by

From this expression we see that F(f) decays more
rapidly than does F,(¢), so that inferences about the
closed-time distribution will be more severely biased
than those about the open-time distribution.

The probabilities G, (0) have been widely used in the
biophysical literature to examine the hypothesis of
identical independent channels (for example, see
Jackson (1985), Thorn & Martin (1987) and Glasbey
& Martin (1988)). Because g,(0) and g,(0) are the
probabilities that a channel is open and closed
respectively, g,(0) + ¢.(0) = 1, and equation (8) implies
that the G,(0) are a binomial distribution. The relative
frequencies of times spent at levels £ = 0,1, ..., 7 have
been compared with those probabilities. A similar
comparison can be done for each ¢: from the binomial
expansion, the probability that the conductance of the
superposition does not change during a length of time
tis

= (&(0) +&.(1)".
Define H,(t) to be the probability that superposition is
at level £ for a length of time at least ¢ given that it does
not change level during that time:

Gyt
6.

_ ("% ’“(__ £(t) )""‘
(k)(o<t>+gc<t>) “awrew) o Y

From this expression we see that the model of
independent identical channels implies that the H,(f)
are a binomial distribution.

The single-channel functions g,(¢) and g,(¢) can be
recovered from the G,({): because the mean of a
binomial distribution with 7 trials and success prob-
ability p is np,

Hy (1) =

I SUR

&) +g.(6)  npo
and thus
1 n
alt) =200 S a6,
1 n
= = G (T § (8- (11)
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The relation between g (f) and the G,(¢) is thus fairly
direct. We note that in particular

0(0) =1 £ £6,(0), (12)

k=0

is the probability that a constituent channel is open, as
G.(0) = 1. An expression similar to equation (11) can
be obtained for g,(¢):

1 n

&) = W}E} (n—Fk) G,.(1).
The dwell-time densities can be obtained by differ-
entiation, but it is not clear to us that there is any
particular advantage, other than conventionality, for
using these as basic objects rather than g, and g.. Note
that for a Markov model f,(¢) and g,(¢) are both sums
of the same exponentials, differing only in amplitudes.

We now turn to the two-dimensional G functions,
the analogues of the functions g,, and g,, introduced in
the previous section. Consider G, ,.,(s,¢): in terms of
the constituent channels, this is the probability that (i)
one channel undergoes a transition from closed to
open, (ii) k£ channels are open throughout an interval
of length s+¢, and (iii) n—k—1 channels are closed
throughout the interval. We thus have

—1
Guan(5:) = neals) ("7, )als %o 0

(13)
Similarly,

Gt (55) = 1805, 1) (z a0 a o

In particular, G, ,,,(0,0) is the rate at which the
superposition makes transitions from level £ to level
k+1:

-1
G (0,0) = m:(” . )n’;u —m)

Summing equation (13) from £ =0 to n—1 we find

G, ) = ngeo(s,1) (go(s+1) +ge(s+1))"
= ngeo(s, 1) Go(s+1) V™. (14)

From this expression we see that g (s,¢) can be found
from G, (s,t) and G, (s+1). g,.(5,t) can be determined
similarly. Thus the joint closed—open and open—closed
dwell-time probability density functions can be found
from statistics of the superposition process. As remarked
above, under mild assumptions on a Markov model,
these joint density functions determine the entire
probability law of the single-channel processes, and as
a consequence the entire probability law of the single-
channel processes can be determined from the super-
position (that this is true may also be seen from the
closing remarks of Fredkin & Rice 1987).

As a special case of equation (14), at s=¢=0 we
have G, (0,0) = ng.,(0,0) which is n times the average
opening rate. This result makes intuitive sense since
G,.(0,0) is the rate at which the superposed process
jumps to a higher level and each such jump is the

Phil. Trans. R. Soc. Lond. B (1991)
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contribution of a single channel opening. From this
expression and from equation (12) we see that the
mean open time of a single channel can be found from
the superposition by

2 kGL(0)

=£0 1
"= 60,0 )
This relation was also noted by Dabrowski et al. (1990),
with quite different notation, in the case of an
alternating renewal process. This simple expression
would appear to be quite useful as it only depends
weakly on 7, which may not be known accurately. The
numerator and denominator can be estimated easily
from a multi-channel recording, and even if the
recording contains no excursions to high levels, this is
presumably the case because the corresponding G,(0)
are quite small and thus have little effect on the
numerator.

Let S be the duration of a closing and 7" the duration
of the subsequent opening of a constituent channel.
Thus from equations (4) and (14), we have

P(S>s& T>1f) = _ngco(g, J
n

_ G, (s,t)
G,.(0,0) G (s+) 0™

The survival function of an open time can be obtained
by evaluating this expression at s = 0 giving

Y
B =5 0,0) 6@ o o)

It is noteworthy that if n is large, it need not be known
with great precision to use these expressions to provide
estimates of the bivariate and univariate survival
functions. In fact, for large 7, the exponent (n—1)/n
can be replaced by 1 with little consequent bias.
Leibowitz & Dionne (1984), for example, report
experiments in which the number of acetylcholine
receptors in a patch at a neuromuscular junction is of
the order 100-1000.

When normalized to sum to one, the values of
Grre1(s, 1) are related as binomial probabilities. Let

G st
ch,lc+1<5, f) = 5“25( t))
++\7

_(n—l)( & s+ )’“
% s+ +g.(s+1)

g, (s+1) okt
X<1_go<s+t>+gc<s+t>> - 7

From this expression we see that the values of
Hy pi1(5,8),k=0,1,...,n—1, are binomial probabili-
ties, providing another testable consequence of the
model of independent identical channels. Furthermore,
these probabilities only depend on s and ¢ through s+¢.
The case s = ¢t = 0 yields

—1
Hy1(0,0) = ( . )n’;a —my) (18)
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which expresses the intuitively obvious fact that the
relative rates at which transitions are made to higher
levels are related as binomial probabilities.

Comparing equations (17) and (10), we see that the
model also predicts interesting relations between the H
functions with two arguments and those with one, for
example:

1 = &ls+10)
H = °
n—1 IEO * k’kﬂ(s, ! gols+1) +g.(s+1)
1 n
=—23 kH, (s+1). (19)
7 k=0

(b) Identical multi-level channels
Non-degenerate case

Extension of the previous section to the superposition
of independent identical channels with more than two
conductance levels is straightforward if the conduc-
tance levels are incommensurate. Let each channel
have s+1 conductance levels, ¥, =0,7,,...,Y,. The
conductance state of n channels is characterized by an
s+ 1 dimensional vector of integers v = (v,...v,), where
v, is the number of channels in conductance level kt.
By incommensurate we mean that an ideal observation
of the conductance Y, = v+Y determines the integer
vector v uniquely. Specifically if ¢ is a vector of integers
then ¢-Y =0 implies that ¢, =0,k =1,...,s. In the
next section we will describe some of the complications
that ensue when this assumption of incommensurability
fails.

We define G,(f) to be the probability that the z-
channel system is in the state characterized by » during
a random time interval of duration ¢{. Then, as in the
case of bi-level channels,

n!

G(1) = gl

where g, (¢) is the probability that a given channel is in
conductance state Y, during a random time interval of
duration ¢, the quantity analogous to g.(f) and g.(¢) in
the previous section. As we have done before, we
introduce the probability G, (f) that the n-channel
system makes no transitions during a random time
interval of duration ¢,

G. (1) =ZG6,(0) = lg@)I",

and the conditional probability of state v, given that no
transitions occur,

_ o0
O =50

The H,(f) are a multinomial distribution.

If the n-channel system is in state v during a random
time interval of duration ¢, the fraction of channels in
conductance level £ is v, /n, which provides an estimate

t In this section the following standard mathematical notation
will be used in connection with vectors of integers: |v| = Z, v,
vi=1II,v,!, and, if x is any real vector, x’ =TIl x}* and
vex =X, VK,

Phil. Trans. R. Soc. Lond. B (1991)

of the one channel conditional probability g, (¢)/|g(¢)]
for conductance level k. Weighting this estimate with
the probability of state v, H,(f), we arrive at the
estimate

FUNE
g] ~ 20/
or
G, () ORERT
a»=—%—§ﬂmV=EE$£%

for the vector of one-channel probabilities g(¢), in
analogy with equation (11). This is, in fact, the
maximum likelihood estimator.

We turn now to the two time functions for one or
many channels. For one channel, we define g,;(s, ) as
the probability that the channel makes a transition
from conductance level ¥, to level ¥ at time ¢ =0,
having been previously in level ¥, for a duration of time
at least s and is subsequently in level ¥, for a duration
of time at least . For s =¢= 0, we obtain the ¥,— ¥,
transition rate §;:

£4(0,0) = &,

and the analogues of equations (5) and (6) are

¢(0,1) = &, F(1), (20)
Se,(0.0) = 50, (1)
' 05(5,0) = &, Els), (22)
Za,(s.0) =~ £, (23)

where F(¢) is the survival function for level ¥,. If we
define 7, to be the equilibrium probability of level ¥,
so that 7, = g,(0), and g, to be the mean dwell time in
level ¥, it follows from equations (20-23) and

/h=f E( d,

0

that

m, m,

NS TG

which are equivalent because the rate of entry into
level ¥, X,¢,, must equal the rate of exit from that
level, 2, ¢,,.

To discuss the two time many channel functions, let
us define the s+ 1 component vectors €' to have ith
component unity and all other components zero. Let «
be any vector of non-negative integers with |x| = n—1.
Define Gy;(s,t) to the probability that some channel
makes a transition ¥,— ¥ at time ¢ = 0, the system of
channels having been previously in the state described
by the vector « + ¢ for a duration of time at least s and
is subsequently in the state described by the vector
k~+¢ for a duration of time at least ¢. Then

Gy (s, t) = nG (s+1) g;(5, 1)

n! .
= ;!-g(s+ £) gij(«‘s t),
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the analogue of equation (13). The quantities Gj(s, ¢)
can be directly estimated from observations, as we
discuss in §4. To estimate g;(s, ¢), define

Gyls,t) = TGy(s, 1) = nlgls+ 01" gy(s, )

=nG, (s+1) o gif(5> 1), (24)

the analogue of equation (14). G,,(s, ) is the probability
of a ¥;— ¥, transition at 0, say, such that there are no
other transitions during the time interval (—s,?).

It is interesting to note that, for s =¢=0, these
relations become

n!
G’i(j(oa 0) = ;]”K gij

and
G;(0,0) = ng, (25)
so that

Gy(0,0) _Ixl!
Gij(0> O) B

k!

a multinominal distribution independent of the pair .
Moreover

2G4(0,0) =n2g,; = il
j j M
_X,G,0),
B Mo
so that, in terms of observable quantities,

_ ZV GV(O> Vi

o= 6

the analogue of equation (15).
The bivariate survival function of a dwell time at
level ¢ and a subsequent dwell time at level j is

B =2

From equations (24) and (25) we have

Gij(fz t)

F;j(f, t) = Gﬁ(o) 0) G+(J+t)(n_l)/n.

The univariate survival functions can be found by
summing equation (20) over ¢ and use equations (24)
and (25) to give

%:Gy4(0,9)

E(t) = G+(t)(n—1)/n Zi ij(o) 0)

(27)

Again, as in the previous section, we see that
equation (26) does not depend strongly on n and that
equation (27) is insensitive to the value of » when 7 is
large.

Degenerate case

In the case that some of the conductance levels are
commensurate, the superposition of independent,
identical channels each having more than two con-

Phil. Trans. R. Soc. Lond. B (1991)
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ductance levels does not lead to relations quite so neat
as those of the previous section. Rather than carrying
out the analysis in the greatest generality, we will
consider a particular, but non-trivial case. Suppose
that each of n independent, identical channels has
three conductance levels: zero, one, and two. (Labarca
et al. (1985) consider a chloride channel which has this
character.) Note that, unlike the incommensurate case,
there is considerable ambiguity in such a superposition ;
for example a current of level three may arise from
three channels being open with unit conductance or
from one being open at level two and one being open
at level one. None the less, we will see that the statistics
of the individual channels can be recovered from those
of the superposition. The superposition thus has

possible conductances £ =0, 1, ..., 2n with
’ n! n, n n
G (t) =X mgo(t) g1 ()" g, ()™,

where X’ denotes the sum over ngy, n,, n, such that
ny+n,+n, =n and n,+2n, =k (n,, n,, and n, are the
numbers of channels at levels zero, one and two). Let
H, () = G,()/G,(t) as before, where G, ({) = X, G, ().

In §34a, viewing the H,(t) as a binomial distribution
made it possible to express the g functions in terms of
the mean of that distribution and thus ultimately in
terms of the G functions. Here we will use a similar
approach, but as the H.(¢{) are not a binomial
distribution, the relations are not so simple. We will see
that in order to recover the g functions, it will be
necessary to use the mean and variance of the
distribution. To motivate the analysis, suppose that V
is a random variable taking on values v = 0, 1, 2 with
probabilities py, py, po. The mean of V is

/,l, =p1+2p2:
and
E(V?) = py+4p, = o+

Let T'= V;+ V,+... + V, where the V] are independent
and identically distributed as V. Then 7 has mean and
variance given by

for = npt
o = not.

The probabilities p; and p, can be expressed in terms of
M and o as

=07 2y —0h—n"d), (28)
po= 2n) = pptoh+nul), (29)
and py = 1 =p,—p,.

Now the distribution defined by the H,(f) is the same
as the distribution of 7" above. Because every value of
Go(H)"0 g1 ()™ go(t) "2 withng+n, +n, = nentersinto G (¢)
with multiplicity given by the corresponding multi-
nominal coefficient, we have

Go(t) = (8(0) +&1(1) +&, ()"

The analogues to the p, above are

g(t)
Zo(t) +81(1) + 25(0)

pit) =
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Superposition of channel currents

which can be solved for in terms of the mean and
variance of the distribution defined by the H,(¢) using
equations (28) and (29). Having found the p,(¢) the
g;(t) are found as

&(0) = G..(0)"" pi(0).

Thus the dwell-time distributions of the constituent
channels can be recovered from the superposition.

The two-dimensional G functions determine the two-
dimensional g functions. To see this, consider G, , (s, £) :
one channel makes a 0 -1 transition and the remaining
n—1 are closed, giving

Go,1(5> )= ”G(()n_l)(5+ t) 801 (5, 1),

where G§*"V(s+1) is the G function for a superposition
of n—1 channels; G{*™P(s+ () can be expressed in terms
of the one-dimensional g functions which have shown
how to determine above. Similarly, we have the
equations,

G (5,0) = ”chn_l) (5+1) (801 (5, 8) +815(5, 1)),
k=1,...,2n—2

and

G2n—1,2n(‘f7 t) = nG;cn_l) (5+ t) g12 (‘f) t)'

The functions gy, (s,¢) and g;,(s,¢) can be found by
solving this overdetermined system of 2n equations.
Finally,

Glc,/e+2(5> )= ”chn_l)(& 1) 8oa(s5,8), k=0,...,2n—2

from which gg,(s, f) can be determined as

2n—2

pX Gk,lc+2(5: £)
8o2(s,8) = ;2_7’%;;2—
Y Gr Y (s+1¢)

k=0

(¢) Non-identical channels

To see some of the issues that arise in this case,
consider an example of two channels in which channel
I has conductance levels zero and ¥, and channel 11
has conductance levels zero and ¥, # Y. The super-
position thus has levels zero, ¥, ¥,, and Y, + Y,, which
we denote by £ =0, 1, 2, 3. Then

) = &0) g2 (0)
&) 20
&) 20
20 820,

4
@ @

(1
(

Golt

G, (¢
G,(t
G, (¢

where g'V and g are the g functions for channels I and
II. Examining these equations, we see that if

)
)
)

()

for any p(t) > 0, the G functions are unchanged. All
solutions for g functions in terms of the observable G
functions are of this form.
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Because  g0(0)+3(0) = g9 (0)+40(0) =1, i=
1,2, we must have p(0) =1. Consequently, the
equilibrium probabilities for the channels are uniquely
determined as

827(0) = Gy(0)+G,(0)
£2(0) = G,y(0)+G,(0).
We next show that the ambiguity can be resolved by

considering the two-dimensional g functions, which
must satisfy equations like
Go(50) = &3 (5,6) &P (s +1)
@
& (st
= gCO (S t) >
ps+1)

where G, (s, t) is observable and g® (s+ ¢) is found from
the one-dimensional G. Because

Goy(s,8) = gﬁ)( )gff)(s+ £,

we must have

80 (5, 0) = pls+1) g2 (5, )
and similarly
85 (5, 0) = pls+4)7 g3 (5, 1).

We then have
8:0(5,0) = p(s) g0 (5, 0)
=—p(s)g” (s)
by equation (5). We must also have
8:0(5,0) ==&V (s)
=—p'(s) 8" (5) = p(s) & (s)-

Equating these two expressions for &% (s,0) we find

p'(s) g (s) = 0.

Unless g"(s) =0, in which case gP(s) = g2 (s), we
must have p’(s) = 0. This together with the condition
p(0) = 1 implies that p(s) = 1. Therefore, there is no
ambiguity after all.

Let us see then how we can recover information from
the two-dimensional G functions. We have

Goa(5,8) = 860 (5, 1) &2 (s +1) (30)
Goa(5, 1) = g0 (5, 1) 88 (s +1) (31)
Grals8) = g3 (5,6) 85 (s +1) (31)
Gas(5:8) = ge (5, £) 87 (s +1). (33)

Evaluating these at s = ¢ = 0 we have

G (0,0) = g(l)"?)
Gyy(0,0) = {™mP
G12< 0) = €<2)ﬂ31)

Gus(0,0) = LV

These equations yield
LV = Gy + Gy,
{® = Gy + Gy,
Goo/ (Goa+ G1y)
Go1/ Gy + Gys)

b =

=
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where we have suppressed the arguments (0,0) of the
Gs. The closed (and hence open) probabilities and the
opening and closing rates for each of the channels can
thus be simply computed. From these we can find the
mean dwell times:

G02
(Goa+Giz) (Gor+Go)

pe = Cobe,
¢ (G02 + Gl2) (GOI + G23

1 —
Mo =

#P and pl? are given by similar expressions (the
numerators Gy, and G, are replaced by G,, and G,;).

Although we have shown that the two-channel
functions of the superposition uniquely determine the
one-channel functions of the constituents, we have not
yet given a constructive procedure for actually finding
the latter. The uniqueness argument used the two-
dimensional functions of the superposition, so it is
reasonable to look to these for the desired construction.
By using equations (5) and (6) we have the following
eight equations:

G (5,0) = — g (5) &7 ()
Goa(5,0) = —g (5) g (s)
G1a(5,0) = —gP'(s) &7 (5)
Gas(5,0) = — g (5) £ (5)
Gor(0,5) = =g (5) g2 (s)
Gy (0,5) = — g (5) &P (s)
G15(0,5) = — g (5) g (s)

Gy3(0,5) = _gf)l)/(f) ggz) (5).

These may be solved for g{"(s), for example, as follows:

We have

€0 Gul50)  Gyls0) _
ggl),(‘f) B GZI<07 5) - G23(075) B a(‘f)
gt(ll)(s) _ Gy (5,0) _ Gy,(0,5) —
D(5) ~ Gra(s,0) ~ Gra(0,5) ~ 11

Solving the second equation for gt (s) and substituting

into the second gives

b (5) 8°(5) 4 0() 88 (5) = als) g8 (s

or

EONRAD
£P() ~ als) —b(s)

By using the initial condition g{"(0) = #{", which we
have already shown to be constructable from the two-
dimensional G functions, the solution of this differential
equation is

s v
gV (s) = aPexp (L W)E%du). (34)

Having found the one-dimensional g functions, the two-
dimensional gs can be determined from the equations
(30-33) for the Gy(s,¢). Thus, the one- and two-
dimensional dwell-time distributions of the component
processes can be uniquely determined from the statistics
of the superposition.
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4. ESTIMATION

In this section we present some proposals for
estimating the G functions of the superposition, in
terms of which the g functions of the constituent
processes can be determined and the plausibility of a
model of independent channels can be examined, using
the various relations developed in the previous sections.
G,(t) is the probability that the superposition is at level
k during a randomly placed interval of length ¢ We
propose estimating this probability from a finite record
S(u), 0 <u < T, by sliding a window of width ¢ along
the record. Let

L(t,u) ={

1 ifSw) =kuso<utt
0 otherwise.

Then E(I,(t,u)) = P(I,(t,u) = 1) = G,(¢). G,(¢) is then
estimated by

1 T—t

GA/eU) =7

71, I (¢, u) du. (35)

Because the expectation may be taken inside the
integral, £(G,(f)) = G,(t). Upon examination of equa-
tion (35), we see that the estimate may be more simply
expressed. Consider the contribution of the ith entrance
to level £ to the integral (35). If this sojourn is of
duration 7; < ¢, there will be no contribution whereas
if T, > t, the contribution will be 7;—¢ We can thus

express equation (35) as

Gl =7 2 (T—1), (36)

i=1
where 7, is the number of sojourns at level £ and
T,—t ifT,>¢

0 otherwise.

(7-t.={

For equations (35) and (36) to be identical we need to
use the convention in equation (36) that if the
superposition is at level £ at time ¢ = 0, 7 is defined to
be the observed duration from ¢=0, and a corre-
sponding convention holds if the superposition is at
level £ at the end of the record.

For some purposes it may be preferable to modify
the estimate as

~ "k
Gl = 7.3 (-1, @)
T
The bias of this estimate is negligible if ¢ € 7T, and the
estimate has the advantages that G,(¢) is a piecewise
linear function that changes slope when ¢ = 7, for some
¢, decreases monotonically and is convex. Its derivative
is thus a decreasing step function, which is the natural
form for an estimate of a survival function (see equation
(2)). G,.(t) may be computed efficiently for all ¢ by first
sorting the 7;. G,(0) is the proportion of time that the
superposition is at level £, and G, (¢) = 0 for ¢ larger
than the maximum 7.
Under assumptions of ergodicity, it can be shown
that G,(f) converges to G,(t) at T—00. We will not
pursue more detailed discussion of the statistical
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Superposition of channel currents

behaviour of G, (¢) at this time. However, we note that
the values of this random function at different #s are
strongly correlated.

We have seen in a previous section that under
various scenarios the g functions can be determined
from the G,, as in equation (11), for example. These
relations can be used to form estimates of the g
functions in terms of the G,.

Dwell-time distributions are frequently fit by sums of
exponentials to explore the plausibility of various
kinetic models. Such forms could be fit either to the g
functions which have been estimated from the G, or
directly to the G,. Although the former is less direct, it
has the advantage of separating the rate constants of
the open states from those of the closed states, which
may be more numerous. (Note that G,(¢) is a sum of
exponentials with rates given by sums and multiples of
the eigenvalues of @, and @Q,,.)

The two-dimensional G functions may be estimated
in a simple way. Note that whereas one-dimensional G
functions are proportional to integrals of survival
functions (2), two-dimensional G functions are pro-
portional to bivariate survival functions (4). We are
thus led to the natural estimate

. N(s, )

Gk,lc+1(5> )= T (38)

—t—y
where N(s,¢) is the number of £—k+1 transitions
preceded by a duration at least s at level £ and followed
by a duration at least ¢ at level £+ 1. Again, it may be
desirable to modify this estimate slight,

Gopnals ) = 150 (39)

The estimate G~k,k+1(s, {) is then a step function. We
note that mean dwell times can be estimated in a
relatively straightforward way via relations such as
(15). We have also seen that when 7 is large, survival
functions can be estimated without precise knowledge
of n from the two-dimensional G functions via relations

like (16).

5. CONCLUDING REMARKS

In this paper we have developed a number of
quantitative and testable properties of superpositions
of independent channels. For example, in the case of
independent identical bi-level channels, we have shown
that the H,(¢) are a binomial distribution for all ¢ and
in the non-degenerate case of independent identical
multi-level channels, the H,({) are a multinomial
distribution for all £ For independent non-identical
channels we have seen that the G functions satisfy
certain relations. If the constituent channels of a
superposition interact, these interactions should be
evident from the failure of some of these properties to
hold and perhaps insight into the character of the
interactions can be gained from the nature of the
deviations. It is conceivable, from example, that one or
more channels being open for a given length of time
affects the opening rates of the remaining closed
channels. Deviations from relations such as (17) may
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result. We note that Yeramian ef al. (1986) also use
two-time probabilities, different from ours, in a desire
to improve upon the discriminatory power of tests
based only on stationary probabilities.

In all our examples it has proved possible in theory
to recover the statistics of individual channels from
those of the superposition. The practical limitations of
the various procedures remain to be explored. In
particular, we note that our formulae for recovery
entail knowing n, the number of channels in the patch,
although as we have noted, some estimates are
insensitive to the value of n. Also, the sampling
properties of the estimates of the G and g functions are
not clear. As an example, the sampling properties of an
estimate based on the relation (34) may be rather
complicated. The bootstrap (Efron & Tibshirani 1986)
may be a useful tool in assessing sampling fluctuations.

We have shown that the two-dimensional dwell-time
distributions of the constituent channels can be
recovered from the superposition. For an aggregated
Markov model, these distributions determine the entire
probability law of the channel process (Fredkin & Rice
1986). For a more general model of a stationary
sequence of dwell times, it is an open question whether
the complete probability laws of the constituent
channels can be recovered from the superposition.

Our primary tools in this analysis have been the g
and G functions, which are especially well suited to
analysing the one- and two-dimensional distributions of
the superposition and its constituents. These tools
complement those of Colquhoun & Hawkes (1990)
who make use of the two-channel @ matrix to derive
expressions for probabilities of various runs of single
and double openings.

This research was supported by a grant from the National
Institutes of Health.
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